Меню

Эконометрика ошибка 1 рода

Проверка статистической гипотезы означает проверку согласования исходных выборочных данных с выдвинутой основной гипотезой. При этом возможно возникновение двух ситуаций – основная гипотеза может подтвердиться, а может и опровергнуться. Следовательно, при проверке статистических гипотез существует вероятность допустить ошибку, приняв или опровергнув верную гипотезу.

При проверке статистических гипотез можно допустить ошибки первого или второго рода

Ошибкой первого рода называется ошибка, состоящая в опровержении верной гипотезы.

Ошибкой второго рода называется ошибка, состоящая в принятии ложной гипотезы.

Уровнем значимостиа называется вероятность совершения ошибки первого рода.

Значение уровеня значимости а обычно задаётся близким к нулю (например, 0,05; 0,01;0,02 и т. д.), потому что чем меньше значение уровеня значимости, тем меньше вероятность совершения ошибки первого рода, состоящую в опровержении верной гипотезы Н0.

Вероятность совершения ошибки второго рода, т. е. принятия ложной гипотезы, обозначается β.

При проверке нулевой гипотезы Н0возможно возникновение следующих ситуаций:

Проверка справедливости сттатистическвх гипотез осуществляется с помощью различных статистических критериев.

Статистическим критерием называется случайная величина, которая используется с целью проверки нулевой гипотезы.

Статистические критерии называются соответственно тому закону распределения, которому они подчиняются, т. е. F-критерий подчиняется распределению Фишера-Снедекора, χ2-критерий подчиняется χ2-распределению, Т-критерий подчиняется распределению Стьюдента, U-критерий подчиняется нормальному распределению.

Наблюдаемым значением статистического критерия называется значение критерия, которое рассчитано по выборочной совокупности, подчиняющейся определённому закону распределения.

Множество всех возможных значений выбранного статистического критерия делится на два непересекающихся подмножества. Первое подмножество включает в себя те значения критерия, при которых основная гипотеза отвергается, а второе подмножество – те значения критерия, при которых основная гипотеза принимается.

Критической областью называется множество возможных значений статистического критерия, при которых основная гипотеза отвергается.

Областью принятия гипотезы или областью допустимых значений называется множество возможных значений статистического критерия, при которых основная гипотеза принимается.

Если наблюдаемое значение статистического критерия, рассчитанное по данным выборочной совокупности, принадлежит критической области, то основная гипотеза отвергается. Если наблюдаемое значение статистического критерия принадлежит области принятия гипотезы, то основная гипотеза принимается.

Критическими точками или квантилями называются точки, разграничивающие критическую область и область принятия гипотезы.

Критические области могут быть как односторонними, так и двусторонними.

Ошибки I и II рода при проверке гипотез, мощность

Общий обзор

Принятие неправильного решения

Мощность и связанные факторы

Проверка множественных гипотез

Общий обзор

Большинство проверяемых гипотез сравнивают между собой группы объектов, которые испытывают влияние различных факторов.

Например, можно сравнить эффективность двух видов лечения, чтобы сократить 5-летнюю смертность от рака молочной железы. Для данного исхода (например, смерть) сравнение, представляющее интерес (напри­мер, различные показатели смертности через 5 лет), называют эффектом или, если уместно, эффектом лечения.

Нулевую гипотезу выражают как отсутствие эффекта (например 5-летняя смертность от рака мо­лочной железы одинаковая в двух группах, получаю­щих разное лечение); двусторонняя альтернативная гипотеза будет означать, что различие эффектов не равно нулю.

Критериальная проверка гипотезы дает возможность определить, достаточно ли аргументов, чтобы отвергнуть нулевую гипотезу. Можно принять только одно из двух решений:

  1. отвергнуть нулевую гипотезу и принять альтер­нативную гипотезу
  2. остаться в рамках нулевой гипотезы

Важно: В литературе достаточно часто встречается понятие «принять нулевую гипотезу». Хотелось бы внести ясность, что со статистической точки зрения принять нулевую гипотезу невозможно, т.к. нулевая гипотеза представляет собой достаточно строгое утверждение (например, средние значения в сравниваемых группах равны ).

Поэтому фразу о принятии нулевой гипотезы следует понимать как то, что мы просто остаемся в рамках гипотезы.

Принятие неправильного решения

Возможно неправильное решение, когда отвергают/не отвергают нулевую гипотезу, потому что есть только выборочная информация.

 
Верная гипотеза
H0 H1
Результат

 применения 

критерия
H0 H0 верно принята H0 неверно принята 

(Ошибка второго рода)
H1 H0 неверно отвергнута 

(Ошибка первого рода)
H0 верно отвергнута

Ошибка 1-го рода: нулевую гипотезу отвергают, когда она истинна, и делают вывод, что имеется эффект, когда в действительности его нет. Максимальный шанс (вероятность) допустить ошибку 1-го рода обозначается α (альфа). Это уровень значимости критерия; нулевую гипотезу отвергают, если наше значение p ниже уровня значимости, т. е., если p < α.

Следует принять решение относительно значения а прежде, чем будут собраны данные; обычно назначают условное значение 0,05, хотя можно выбрать более ограничивающее значение, например 0,01.

Шанс допустить ошибку 1-го рода никогда не превысит выбранного уровня значимости, скажем α = 0,05, так как нулевую гипотезу отвергают только тогда, когда p< 0,05. Если обнаружено, что p > 0,05, то нулевую гипотезу не отвергнут и, следовательно, не допустят ошибки 1-го рода.

Ошибка 2-го рода: не отвергают нулевую гипотезу, когда она ложна, и делают вывод, что нет эффекта, тогда как в действительности он существует. Шанс возникновения ошибки 2-го рода обозначается β (бета); а величина (1-β) называется мощностью критерия.

Следовательно, мощность — это вероятность отклонения нулевой гипотезы, когда она ложна, т.е. это шанс (обычно выраженный в процентах) обнаружить реальный эффект лечения в выборке данного объема как статистически значимый.

В идеале хотелось бы, чтобы мощность критерия составляла 100%; однако это невозможно, так как всегда остается шанс, хотя и незначительный, допустить ошибку 2-го рода.

К счастью, известно, какие факторы влияют на мощность и, таким образом, можно контролировать мощность критерия, рассматривая их.

Мощность и связанные факторы

Планируя исследование, необходимо знать мощность предложенного критерия. Очевидно, можно начинать исследование, если есть «хороший» шанс обнаружить уместный эффект, если таковой существует (под «хорошим» мы подразумеваем, что мощность должна быть по крайней мере 70-80%).

Этически безответственно начинать исследование, у которого, скажем, только 40% вероятности обнаружить реальный эффект лечения; это бесполезная трата времени и денежных средств.

Ряд факторов имеют прямое отношение к мощности критерия.

Объем выборки: мощность критерия увеличивается по мере увеличения объема выборки. Это означает, что у большей выборки больше возможностей, чем у незначительной, обнаружить важный эффект, если он существует.

Когда объем выборки небольшой, у критерия может быть недостаточно мощности, чтобы обнаружить отдельный эффект. Эти методы также можно использовать для оценки мощности критерия для точно установленного объема выборки.

Вариабельность наблюдений: мощность увеличивается по мере того, как вариабельность наблюдений уменьшается.

Интересующий исследователя эффект: мощность критерия больше для более высоких эффектов. Критерий проверки гипотез имеет больше шансов обнаружить значительный реальный эффект, чем незначительный.

Уровень значимости: мощность будет больше, если уровень значимости выше (это эквивалентно увеличению допущения ошибки 1-го рода, α, а допущение ошибки 2-го рода, β, уменьшается).

Таким образом, вероятнее всего, исследователь обнаружит реальный эффект, если на стадии планирования решит, что будет рассматривать значение р как значимое, если оно скорее будет меньше 0,05, чем меньше 0,01.

Обратите внимание, что проверка ДИ для интересующего эффекта указывает на то, была ли мощность адекватной. Большой доверительный интервал следует из небольшой выборки и/или набора данных с существенной вариабельностью и указывает на недостаточную мощность.

Проверка множественных гипотез

Часто нужно выполнить критериальную проверку значимости множественных гипотез на наборе данных с многими переменными или существует более двух видов лечения.

Ошибка 1-го рода драматически увеличивается по мере увеличения числа сравнений, что приводит к ложным выводам относительно гипотез. Следовательно, следует проверить только небольшое число гипотез, выбранных для достижения первоначальной цели исследования и точно установленных априорно.

Можно использовать какую-нибудь форму апостериорного уточнения значения р, принимая во внимание число выполненных проверок гипотез.

Например, при подходе Бонферрони (его часто считают довольно консервативным) умножают каждое значение р на число выполненных проверок; тогда любые решения относительно значимости будут основываться на этом уточненном значении р.

Связанные определения:
p-уровень
Альтернативная гипотеза, альтернатива
Альфа-уровень
Бета-уровень
Гипотеза
Двусторонний критерий
Критерий для проверки гипотезы
Критическая область проверки гипотезы
Мощность
Мощность исследования
Мощность статистического критерия
Нулевая гипотеза
Односторонний критерий
Ошибка I рода
Ошибка II рода
Статистика критерия
Эквивалентные статистические критерии

В начало

Содержание портала

Ошибки, встроенные в систему: их роль в статистике

В прошлой статье я указал, как распространена проблема неправильного использования t-критерия в научных публикациях (и это возможно сделать только благодаря их открытости, а какой трэш творится при его использовании во всяких курсовых, отчетах, обучающих задачах и т.д. — неизвестно). Чтобы обсудить это, я рассказал об основах дисперсионного анализа и задаваемом самим исследователем уровне значимости α. Но для полного понимания всей картины статистического анализа необходимо подчеркнуть ряд важных вещей. И самая основная из них — понятие ошибки.

Ошибка и некорректное применение: в чем разница?

В любой физической системе содержится какая-либо ошибка, неточность. В самой разнообразной форме: так называемый допуск — отличие в размерах разных однотипных изделий; нелинейная характеристика — когда прибор или метод измеряют что-то по строго известному закону в определенных пределах, а дальше становятся неприменимыми; дискретность — когда мы чисто технически не можем обеспечить плавность выходной характеристики.

И в то же время существует чисто человеческая ошибка — некорректное использование устройств, приборов, математических законов. Между ошибкой, присущей системе, и ошибкой применения этой системы есть принципиальная разница. Важно различать и не путать между собой эти два понятия, называемые одним и тем же словом «ошибка». Я в данной статье предпочитаю использовать слово «ошибка» для обозначения свойства системы, а «некорректное применение» — для ошибочного ее использования.

То есть, ошибка линейки равна допуску оборудования, наносящего штрихи на ее полотно. А ошибкой в смысле некорректного применения было бы использовать ее при измерении деталей наручных часов. Ошибка безмена написана на нем и составляет что-то около 50 граммов, а неправильным использованием безмена было бы взвешивание на нем мешка в 25 кг, который растягивает пружину из области закона Гука в область пластических деформаций. Ошибка атомно-силового микроскопа происходит из его дискретности — нельзя «пощупать» его зондом предметы мельче, чем диаметром в один атом. Но способов неправильно использовать его или неправильно интерпретировать данные существует множество. И так далее.

Так, а что же за ошибка имеет место в статистических методах? А этой ошибкой как раз и является пресловутый уровень значимости α.

Ошибки первого и второго рода

Ошибкой в математическом аппарате статистики является сама ее Байесовская вероятностная сущность. В прошлой статье я уже упоминал, на чем стоят статистические методы: определение уровня значимости α как наибольшей допустимой вероятности неправомерно отвергнуть нулевую гипотезу, и самостоятельное задание исследователем этой величины перед исследователем.
Вы уже видите эту условность? На самом деле, в критериальных методах нету привычной математической строгости. Математика здесь оперирует вероятностными характеристиками.
И тут наступает еще один момент, где возможна неправильная трактовка одного слова в разном контексте. Необходимо различать само понятие вероятности и фактическую реализацию события, выражающуюся в распределении вероятности. Например, перед началом любого нашего эксперимента мы не знаем, какую именно величину мы получим в результате. Есть два возможных исхода: загадав некоторое значение результата, мы либо действительно его получим, либо не получим. Логично, что вероятность и того, и другого события равна 1/2. Но показанная в предыдущей статье Гауссова кривая показывает распределение вероятности того, что мы правильно угадаем совпадение.

Наглядно можно проиллюстрировать это примером. Пусть мы 600 раз бросаем два игральных кубика — обычный и шулерский. Получим следующие результаты:

До эксперимента для обоих кубиков выпадение любой грани будет равновероятно — 1/6. Однако после эксперимента проявляется сущность шулерского кубика, и мы можем сказать, что плотность вероятности выпадения на нем шестерки — 90%.

Другой пример, который знают химики, физики и все, кто интересуется квантовыми эффектами — атомные орбитали. Теоретически электрон может быть «размазан» в пространстве и находиться практически где угодно. Но на практике есть области, где он будет находиться в 90 и более процентах случаев. Эти области пространства, образованные поверхностью с плотностью вероятности нахождения там электрона 90%, и есть классические атомные орбитали, в виде сфер, гантелей и т.д.

Так вот, самостоятельно задавая уровень значимости, мы заведомо соглашаемся на описанную в его названии ошибку. Из-за этого ни один результат нельзя считать «стопроцентно достоверным» — всегда наши статистические выводы будут содержать некоторую вероятность сбоя.

Ошибка, формулируемая определением уровня значимости α, называется ошибкой первого рода. Ее можно определить, как «ложная тревога», или, более корректно, ложноположительный результат. В самом деле, что означают слова «ошибочно отвергнуть нулевую гипотезу»? Это значит, по ошибке принять наблюдаемые данные за значимые различия двух групп. Поставить ложный диагноз о наличии болезни, поспешить явить миру новое открытие, которого на самом деле нет — вот примеры ошибок первого рода.

Но ведь тогда должны быть и ложноотрицательные результаты? Совершенно верно, и они называются ошибками второго рода. Примеры — не поставленный вовремя диагноз или же разочарование в результате исследования, хотя на самом деле в нем есть важные данные. Ошибки второго рода обозначаются буквой, как ни странно, β. Но само это понятие не так важно для статистики, как число 1-β. Число 1-β называется мощностью критерия, и как нетрудно догадаться, оно характеризует способность критерия не упустить значимое событие.
Однако содержание в статистических методах ошибок первого и второго рода не является только лишь их ограничением. Само понятие этих ошибок может использоваться непосредственным образом в статистическом анализе. Как?

ROC-анализ

ROC-анализ (от receiver operating characteristic, рабочая характеристика приёмника) — это метод количественного определения применимости некоторого признака к бинарной классификации объектов. Говоря проще, мы можем придумать некоторый способ, как отличить больных людей от здоровых, кошек от собак, черное от белого, а затем проверить правомерность такого способа. Давайте снова обратимся к примеру.

Пусть вы — подающий надежды криминалист, и разрабатываете новый способ скрытно и однозначно определять, является ли человек преступником. Вы придумали количественный признак: оценивать преступные наклонности людей по частоте прослушивания ими Михаила Круга. Но будет ли давать адекватные результаты ваш признак? Давайте разбираться.
Вам понадобится две группы людей для валидации вашего критерия: обычные граждане и преступники. Положим, действительно, среднегодовое время прослушивания ими Михаила Круга различается (см. рисунок):

Здесь мы видим, что по количественному признаку времени прослушивания наши выборки пересекаются. Кто-то слушает Круга спонтанно по радио, не совершая преступлений, а кто-то нарушает закон, слушая другую музыку или даже будучи глухим. Какие у нас есть граничные условия? ROC-анализ вводит понятия селективности (чувствительности) и специфичности. Чувствительность определяется как способность выявлять все-все интересующие нас точки (в данном примере — преступников), а специфичность — не захватывать ничего ложноположительного (не ставить под подозрение простых обывателей). Мы можем задать некоторую критическую количественную черту, отделяющую одних от других (оранжевая), в пределах от максимальной чувствительности (зеленая) до максимальной специфичности (красная).
Посмотрим на следующую схему:

Смещая значение нашего признака, мы меняем соотношения ложноположительного и ложноотрицательного результатов (площади под кривыми). Точно так же мы можем дать определения Чувствительность = Полож. рез-т/(Полож. рез-т + ложноотриц. рез-т) и Специфичность = Отриц. рез-т/(Отриц. рез-т + ложноположит. рез-т).

Но главное, мы можем оценить соотношение положительных результатов к ложноположительным на всем отрезке значений нашего количественного признака, что и есть наша искомая ROC-кривая (см. рисунок):

А как нам понять из этого графика, насколько хорош наш признак? Очень просто, посчитать площадь под кривой (AUC, area under curve). Пунктирная линия (0,0; 1,1) означает полное совпадение двух выборок и совершенно бессмысленный критерий (площадь под кривой равна 0,5 от всего квадрата). А вот выпуклость ROC кривой как раз и говорит о совершенстве критерия. Если же нам удастся найти такой критерий, что выборки вообще не будут пересекаться, то площадь под кривой займет весь график. В целом же признак считается хорошим, позволяющим надежно отделить одну выборку от другой, если AUC > 0,75-0,8.

С помощью такого анализа вы можете решать самые разные задачи. Решив, что слишком много домохозяек оказались под подозрением из-за Михаила Круга, а кроме того упущены опасные рецидивисты, слушающие Ноггано, вы можете отвергнуть этот критерий и разработать другой.

Возникнув, как способ обработки радиосигналов и идентификации «свой-чужой» после атаки на Перл-Харбор (отсюда и пошло такое странное название про характеристику приемника), ROC-анализ нашел широкое применение в биомедицинской статистике для анализа, валидации, создания и характеристики панелей биомаркеров и т.д. Он гибок в использовании, если оно основано на грамотной логике. Например, вы можете разработать показания для медицинской диспансеризации пенсионеров-сердечников, применив высокоспецифичный критерий, повысив эффективность выявления болезней сердца и не перегружая врачей лишними пациентами. А во время опасной эпидемии ранее неизвестного вируса вы наоборот, можете придумать высокоселективный критерий, чтобы от вакцинации в прямом смысле не ускользнул ни один чих.

С ошибками обоих родов и их наглядностью в описании валидируемых критериев мы познакомились. Теперь же, двигаясь от этих логических основ, можно разрушить ряд ложных стереотипных описаний результатов. Некоторые неправильные формулировки захватывают наши умы, часто путаясь своими схожими словами и понятиями, а также из-за очень малого внимания, уделяемого неверной интерпретации. Об этом, пожалуй, нужно будет написать отдельно.

Ошибки первого и второго рода

Выдвинутая гипотеза
может быть правильной или неправильной,
поэтому возникает необходимость её
проверки. Поскольку проверку производят
статистическими методами, её называют
статистической. В итоге статистической
проверки гипотезы в двух случаях может
быть принято неправильное решение, т.
е. могут быть допущены ошибки двух родов.

Ошибка первого
рода состоит в том, что будет отвергнута
правильная гипотеза.

Ошибка второго
рода состоит в том, что будет принята
неправильная гипотеза.

Подчеркнём, что
последствия этих ошибок могут оказаться
весьма различными. Например, если
отвергнуто правильное решение «продолжать
строительство жилого дома», то эта
ошибка первого рода повлечёт материальный
ущерб: если же принято неправильное
решение «продолжать строительство»,
несмотря на опасность обвала стройки,
то эта ошибка второго рода может повлечь
гибель людей. Можно привести примеры,
когда ошибка первого рода влечёт более
тяжёлые последствия, чем ошибка второго
рода.

Замечание 1.
Правильное решение может быть принято
также в двух случаях:

  1. гипотеза принимается,
    причём и в действительности она
    правильная;

  2. гипотеза отвергается,
    причём и в действительности она неверна.

Замечание 2.
Вероятность совершить ошибку первого
рода принято обозначать через
;
её называют уровнем значимости. Наиболее
часто уровень значимости принимают
равным 0,05 или 0,01. Если, например, принят
уровень значимости, равный 0,05, то это
означает, что в пяти случаях из ста
имеется риск допустить ошибку первого
рода (отвергнуть правильную гипотезу).

Статистический
критерий проверки нулевой гипотезы.
Наблюдаемое значение критерия

Для проверки
нулевой гипотезы используют специально
подобранную случайную величину, точное
или приближённое распределение которой
известно. Обозначим эту величину в целях
общности через
.

Статистическим
критерием

(или просто критерием) называют случайную
величину
,
которая служит для проверки нулевой
гипотезы.

Например, если
проверяют гипотезу о равенстве дисперсий
двух нормальных генеральных совокупностей,
то в качестве критерия
принимают отношение исправленных
выборочных дисперсий:.

Эта величина
случайная, потому что в различных опытах
дисперсии принимают различные, наперёд
неизвестные значения, и распределена
по закону Фишера – Снедекора.

Для проверки
гипотезы по данным выборок вычисляют
частные значения входящих в критерий
величин и таким образом получают частное
(наблюдаемое) значение критерия.

Наблюдаемым
значением
называют значение критерия, вычисленное
по выборкам. Например, если по двум
выборкам найдены исправленные выборочные
дисперсиии,
то наблюдаемое значение критерия.

Критическая
область. Область принятия гипотезы.
Критические точки

После выбора
определённого критерия множество всех
его возможных значений разбивают на
два непересекающихся подмножества:
одно из них содержит значения критерия,
при которых нулевая гипотеза отвергается,
а другая – при которых она принимается.

Критической
областью называют совокупность значений
критерия, при которых нулевую гипотезу
отвергают.

Областью принятия
гипотезы (областью допустимых значений)
называют совокупность значений критерия,
при которых гипотезу принимают.

Основной принцип
проверки статистических гипотез можно
сформулировать так: если наблюдаемое
значение критерия принадлежит критической
области – гипотезу отвергают, если
наблюдаемое значение критерия принадлежит
области принятия гипотезы – гипотезу
принимают.

Поскольку критерий
— одномерная случайная величина, все её
возможные значения принадлежат некоторому
интервалу. Поэтому критическая область
и область принятия гипотезы также
являются интервалами и, следовательно,
существуют точки, которые их разделяют.

Критическими
точками (границами)
называют точки, отделяющие критическую
область от области принятия гипотезы.

Различают
одностороннюю (правостороннюю или
левостороннюю) и двустороннюю критические
области.

Правосторонней
называют критическую область, определяемую
неравенством
>,
где— положительное число.

Левосторонней
называют критическую область, определяемую
неравенством
<,
где— отрицательное число.

Односторонней
называют правостороннюю или левостороннюю
критическую область.

Двусторонней
называют критическую область, определяемую
неравенствами
где.

В частности, если
критические точки симметричны относительно
нуля, двусторонняя критическая область
определяется неравенствами ( в
предположении, что
>0):

,
или равносильным неравенством
.

Отыскание
правосторонней критической области

Как найти критическую
область? Обоснованный ответ на этот
вопрос требует привлечения довольно
сложной теории. Ограничимся её элементами.
Для определённости начнём с нахождения
правосторонней критической области,
которая определяется неравенством
>,
где>0.
Видим, что для отыскания правосторонней
критической области достаточно найти
критическую точку. Следовательно,
возникает новый вопрос: как её найти?

Для её нахождения
задаются достаточной малой вероятностью
– уровнем значимости
.
Затем ищут критическую точку,
исходя из требования, чтобы при условии
справедливости нулевой гипотезы
вероятность того, критерийпримет значение, большее,
была равна принятому уровню значимости:
Р(>)=.

Для каждого критерия
имеются соответствующие таблицы, по
которым и находят критическую точку,
удовлетворяющую этому требованию.

Замечание 1.
Когда
критическая точка уже найдена, вычисляют
по данным выборок наблюдаемое значение
критерия и, если окажется, что
>,
то нулевую гипотезу отвергают; если же<,
то нет оснований, чтобы отвергнуть
нулевую гипотезу.

Пояснение. Почему
правосторонняя критическая область
была определена, исходя из требования,
чтобы при справедливости нулевой
гипотезы выполнялось соотношение

Р(>)=?
(*)

Поскольку вероятность
события
>мала (— малая вероятность), такое событие при
справедливости нулевой гипотезы, в силу
принципа практической невозможности
маловероятных событий, в единичном
испытании не должно наступить. Если всё
же оно произошло, т.е. наблюдаемое
значение критерия оказалось больше,
то это можно объяснить тем, что нулевая
гипотеза ложна и, следовательно, должна
быть отвергнута. Таким образом, требование
(*) определяет такие значения критерия,
при которых нулевая гипотеза отвергается,
а они и составляют правостороннюю
критическую область.

Замечание 2.
Наблюдаемое значение критерия может
оказаться большим
не потому, что нулевая гипотеза ложна,
а по другим причинам (малый объём выборки,
недостатки методики эксперимента и
др.). В этом случае, отвергнув правильную
нулевую гипотезу, совершают ошибку
первого рода. Вероятность этой ошибки
равна уровню значимости.
Итак, пользуясь требованием (*), мы с
вероятностьюрискуем совершить ошибку первого рода.

Замечание 3. Пусть
нулевая гипотеза принята; ошибочно
думать, что тем самым она доказана.
Действительно, известно, что один пример,
подтверждающий справедливость некоторого
общего утверждения, ещё не доказывает
его. Поэтому более правильно говорить,
«данные наблюдений согласуются с нулевой
гипотезой и, следовательно, не дают
оснований её отвергнуть».

На практике для
большей уверенности принятия гипотезы
её проверяют другими способами или
повторяют эксперимент, увеличив объём
выборки.

Отвергают гипотезу
более категорично, чем принимают.
Действительно, известно, что достаточно
привести один пример, противоречащий
некоторому общему утверждению, чтобы
это утверждение отвергнуть. Если
оказалось, что наблюдаемое значение
критерия принадлежит критической
области, то этот факт и служит примером,
противоречащим нулевой гипотезе, что
позволяет её отклонить.

Отыскание
левосторонней и двусторонней критических
областей***

Отыскание
левосторонней и двусторонней критических
областей сводится (так же, как и для
правосторонней) к нахождению соответствующих
критических точек. Левосторонняя
критическая область определяется
неравенством
<(<0).
Критическую точку находят, исходя из
требования, чтобы при справедливости
нулевой гипотезы вероятность того, что
критерий примет значение, меньшее,
была равна принятому уровню значимости:
Р(<)=.

Двусторонняя
критическая область определяется
неравенствами
Критические
точки находят, исходя из требования,
чтобы при справедливости нулевой
гипотезы сумма вероятностей того, что
критерий примет значение, меньшееили большее,
была равна принятому уровню значимости:

.
(*)

Ясно, что критические
точки могут быть выбраны бесчисленным
множеством способов. Если же распределение
критерия симметрично относительно нуля
и имеются основания (например, для
увеличения мощности) выбрать симметричные
относительно нуля точки (-
(>0),
то

Учитывая (*), получим
.

Это соотношение
и служит для отыскания критических
точек двусторонней критической области.
Критические точки находят по соответствующим
таблицам.

Дополнительные
сведения о выборе критической области.
Мощность критерия

Мы строили
критическую область, исходя из требования,
чтобы вероятность попадания в неё
критерия была равна
при условии, что нулевая гипотеза
справедлива. Оказывается целесообразным
ввести в рассмотрение вероятность
попадания критерия в критическую область
при условии, что нулевая гипотеза неверна
и, следовательно, справедлива конкурирующая.

Мощностью критерия
называют вероятность попадания критерия
в критическую область при условии, что
справедлива конкурирующая гипотеза.
Другими словами, мощность критерия есть
вероятность того, что нулевая гипотеза
будет отвергнута, если верна конкурирующая
гипотеза.

Пусть для проверки
гипотезы принят определённый уровень
значимости и выборка имеет фиксированный
объём. Остаётся произвол в выборе
критической области. Покажем, что её
целесообразно построить так, чтобы
мощность критерия была максимальной.
Предварительно убедимся, что если
вероятность ошибки второго рода (принять
неправильную гипотезу) равна
,
то мощность равна 1-.
Действительно, если— вероятность ошибки второго рода, т.е.
события «принята нулевая гипотеза,
причём справедливо конкурирующая», то
мощность критерия равна 1 —.

Пусть мощность 1

возрастает; следовательно, уменьшается
вероятностьсовершить ошибку второго рода. Таким
образом, чем мощность больше, тем
вероятность ошибки второго рода меньше.

Итак, если уровень
значимости уже выбран, то критическую
область следует строить так, чтобы
мощность критерия была максимальной.
Выполнение этого требования должно
обеспечить минимальную ошибку второго
рода, что, конечно, желательно.

Замечание 1.
Поскольку вероятность события «ошибка
второго рода допущена» равна
,
то вероятность противоположного события
«ошибка второго рода не допущена» равна
1 —,
т.е. мощности критерия. Отсюда следует,
что мощность критерия есть вероятность
того, что не будет допущена ошибка
второго рода.

Замечание 2. Ясно,
что чем меньше вероятности ошибок
первого и второго рода, тем критическая
область «лучше». Однако при заданном
объёме выборки уменьшить одновременно
иневозможно; если уменьшить,
тобудет возрастать. Например, если принять=0,
то будут приниматься все гипотезы, в
том числе и неправильные, т.е. возрастает
вероятностьошибки второго рода.

Как же выбрать
наиболее целесообразно? Ответ на этот
вопрос зависит от «тяжести последствий»
ошибок для каждой конкретной задачи.
Например, если ошибка первого рода
повлечёт большие потери, а второго рода
– малые, то следует принять возможно
меньшее.

Если
уже выбрано, то, пользуясь теоремой Ю.
Неймана и Э.Пирсона, можно построить
критическую область, для которойбудет минимальным и, следовательно,
мощность критерия максимальной.

Замечание 3.
Единственный способ одновременного
уменьшения вероятностей ошибок первого
и второго рода состоит в увеличении
объёма выборок.

Соседние файлы в папке Лекции 2 семестр

  • #
  • #
  • #
  • #


5.3. Ошибки первого и второго рода

Ошибка первого рода состоит в том, что гипотеза  будет отвергнута, хотя на самом деле она правильная. Вероятность

допустить такую ошибку называют уровнем значимости и обозначают буквой  («альфа»).  

Ошибка второго рода состоит в том, что гипотеза  будет принята, но на самом деле она неправильная. Вероятность

совершить эту ошибку обозначают буквой  («бета»). Значение  называют мощностью критерия – это вероятность отвержения неправильной

гипотезы.

В практических задачах, как правило, задают уровень значимости, наиболее часто выбирают значения .

И тут возникает мысль, что чем меньше «альфа», тем вроде бы лучше. Но это только вроде: при уменьшении

вероятности

отвергнуть правильную гипотезу растёт вероятность  — принять неверную гипотезу (при прочих равных условиях).

Поэтому перед исследователем стоит задача грамотно подобрать соотношение вероятностей  и , при этом учитывается тяжесть последствий, которые

повлекут за собой та и другая ошибки.

Понятие ошибок 1-го и 2-го рода используется не только в статистике, и для лучшего понимания я приведу пару

нестатистических примеров.

Петя зарегистрировался в почтовике. По умолчанию,  – он считается добропорядочным пользователем. Так считает антиспам

фильтр. И вот Петя отправляет письмо. В большинстве случаев всё произойдёт, как должно произойти – нормальное письмо дойдёт до

адресата (правильное принятие нулевой гипотезы), а спамное – попадёт в спам (правильное отвержение). Однако фильтр может

совершить ошибку двух типов:

1) с вероятностью  ошибочно отклонить нулевую гипотезу (счесть нормальное письмо

за спам и Петю за спаммера) или
2) с вероятностью  ошибочно принять нулевую гипотезу (хотя Петя редиска).

Какая ошибка более «тяжелая»? Петино письмо может быть ОЧЕНЬ важным для адресата, и поэтому при настройке фильтра

целесообразно уменьшить уровень значимости , «пожертвовав» вероятностью  (увеличив её). В результате в основной ящик будут попадать все

«подозрительные» письма, в том числе особо талантливых спаммеров. …Такое и почитать даже можно, ведь сделано с любовью 🙂

Существует примеры, где наоборот – более тяжкие последствия влечёт ошибка 2-го рода, и вероятность  следует увеличить (в пользу уменьшения

вероятности ). Не хотел я

приводить подобные примеры, и даже отшутился на сайте, но по какой-то мистике через пару месяцев сам столкнулся с непростой

дилеммой. Видимо, таки, надо рассказать:

У человека появилась серьёзная болячка. В медицинской практике её принято лечить (основное «нулевое» решение). Лечение

достаточно эффективно, однако не гарантирует результата и более того опасно (иногда приводит к серьёзному пожизненному

увечью). С другой стороны, если не лечить, то возможны осложнения и долговременные функциональные нарушения.

Вопрос: что делать? И ответ не так-то прост – в разных ситуациях разные люди могут принять разные

решения (упаси вас).

Если болезнь не особо «мешает жить», то более тяжёлые последствия повлечёт ошибка 2-го рода – когда человек соглашается

на лечение, но получает фатальный результат (принимает, как оказалось, неверное «нулевое» решение). Если же…, нет, пожалуй,

достаточно, возвращаемся к теме:

5.4. Процесс проверки статистической гипотезы

5.2. Нулевая и альтернативная гипотезы

| Оглавление |



При проверке статистических гипотез ошибка I рода — это ошибочное отклонение действительно истинной нулевой гипотезы (также известной как «ложноположительный» результат или вывод; например: «невиновный человек осужден»), а ошибка II рода — это ошибочное принятие фактически ложной нулевой гипотезы (также известное как «ложноотрицательный» вывод или вывод; пример: «виновный не осужден»). [1]Большая часть статистической теории вращается вокруг минимизации одной или обеих этих ошибок, хотя полное устранение любой из них является статистически невозможным, если результат не определяется известным, наблюдаемым причинным процессом. Выбрав низкое пороговое значение (отсечку) и изменив уровень альфа (p), можно повысить качество проверки гипотезы. [2] Информация об ошибках типа I и ошибках типа II широко используется в медицине , биометрии и информатике . [ требуется уточнение ]

Интуитивно, ошибки типа I можно рассматривать как ошибки совершения , т. е. исследователь, к несчастью, приходит к выводу, что что-то является фактом. Например, рассмотрим исследование, в котором ученые сравнивают лекарство с плацебо. Если пациенты, получающие препарат, случайно выздоравливают, чем пациенты, получающие плацебо, может показаться, что препарат эффективен, но на самом деле вывод неверен. И наоборот, ошибки II рода — это ошибки упущения .. В приведенном выше примере, если бы пациенты, получавшие лекарство, не выздоравливали быстрее, чем те, кто получал плацебо, но это была случайная случайность, это была бы ошибка II типа. Последствия ошибки типа II зависят от размера и направления пропущенного определения и обстоятельств. Дорогостоящее лекарство для одного из миллиона пациентов может быть несущественным, даже если оно действительно является лекарством.

Определение

Статистический фон

В статистической теории тестирования понятие статистической ошибки является неотъемлемой частью проверки гипотез . Тест состоит в выборе двух конкурирующих предположений, называемых нулевой гипотезой , обозначаемой H0, и альтернативной гипотезой , обозначаемой H1 . . Это концептуально похоже на приговор в судебном процессе. Нулевая гипотеза соответствует положению подсудимого: точно так же, как предполагается, что он невиновен, пока его вина не доказана, так и нулевая гипотеза считается истинной, пока данные не дают убедительных доказательств против нее. Альтернативная гипотеза соответствует позиции против подсудимого. В частности, нулевая гипотеза также предполагает отсутствие различий или отсутствие связи. Таким образом, нулевая гипотеза никогда не может состоять в том, что существует различие или ассоциация.

Если результат теста соответствует действительности, значит, принято правильное решение. Однако если результат проверки не соответствует действительности, значит, произошла ошибка. Есть две ситуации, в которых решение неверно. Нулевая гипотеза может быть верна, тогда как мы отвергаем H 0 . С другой стороны, альтернативная гипотеза H 1 может быть верной, тогда как мы не отвергаем H 0 . Различают два типа ошибок: ошибку первого рода и ошибку второго рода. [3]

Ошибка I типа

Первый вид ошибок — это ошибочное отклонение нулевой гипотезы в результате процедуры проверки. Такую ошибку называют ошибкой первого рода (ложноположительной) и иногда называют ошибкой первого рода.

С точки зрения примера с залом суда ошибка первого рода соответствует осуждению невиновного подсудимого.

Ошибка второго рода

Второй вид ошибок — ошибочное принятие нулевой гипотезы в результате процедуры проверки. Такая ошибка называется ошибкой второго рода (ложноотрицательная), а также называется ошибкой второго рода.

В примере с залом суда ошибка II рода соответствует оправданию преступника. [4]

Частота ошибок кроссовера

Коэффициент перекрестных ошибок (CER) — это точка, в которой ошибки типа I и ошибки типа II равны, и представляет собой лучший способ измерения эффективности биометрии. Система с более низким значением CER обеспечивает большую точность, чем система с более высоким значением CER.

Ложноположительный и ложноотрицательный

См. дополнительную информацию в разделе: Ложноположительные и ложноотрицательные результаты .

Что касается ложноположительных и ложноотрицательных результатов, положительный результат соответствует отклонению нулевой гипотезы, а отрицательный результат соответствует невозможности отвергнуть нулевую гипотезу; «ложный» означает, что сделанный вывод неверен. Таким образом, ошибка I рода эквивалентна ложноположительному результату, а ошибка II рода эквивалентна ложноотрицательному результату.

Таблица типов ошибок

Табличные соотношения между истинностью/ложностью нулевой гипотезы и результатами проверки: [5]

 Таблица типов ошибок
Нулевая гипотеза ( H 0 )
 
Истинный
Ложь
Решение
о нулевой
гипотезе ( H 0 )
Не
отвергай
Правильный вывод
(истинно отрицательный)

(вероятность = 1 − α )

Ошибка типа II
(ложноотрицательный)
(вероятность = β
Отклонять
Ошибка типа I
(ложноположительный результат)
(вероятность = α
Правильный вывод
(истинно положительный)

(вероятность = 1 − β )
 

Частота ошибок

Результаты, полученные для отрицательного образца (левая кривая), перекрываются с результатами, полученными для положительных образцов (правая кривая). Перемещая пороговое значение результата (вертикальная полоса), можно уменьшить количество ложноположительных результатов (FP) за счет увеличения количества ложноотрицательных результатов (FN) или наоборот (TP = истинно положительные результаты, TPR = истинно положительные результаты). частота, FPR = частота ложных срабатываний, TN = истинные отрицательные значения).

Идеальный тест должен иметь ноль ложноположительных и ноль ложноотрицательных результатов. Однако статистические методы носят вероятностный характер, и нельзя знать наверняка, правильны ли статистические выводы. Всякий раз, когда есть неопределенность, есть вероятность совершить ошибку. Учитывая эту природу статистической науки, все проверки статистических гипотез имеют вероятность совершения ошибок первого и второго рода. [6]

  • Частота ошибок первого рода или уровень значимости — это вероятность отклонения нулевой гипотезы при условии, что она верна. Он обозначается греческой буквой α (альфа) и также называется альфа-уровнем. Обычно уровень значимости устанавливается равным 0,05 (5%), подразумевая, что допустимо наличие 5% вероятности ошибочного отклонения истинной нулевой гипотезы. [7]
  • Скорость ошибки II рода обозначается греческой буквой β (бета) и связана с мощностью теста , равной 1−β. [8]

Эти два типа частоты ошибок компенсируются друг другом: для любого заданного набора выборок усилия по уменьшению одного типа ошибки обычно приводят к увеличению другого типа ошибки. [9]

Качество проверки гипотез

Та же идея может быть выражена в терминах доли правильных результатов и, следовательно, использована для минимизации частоты ошибок и повышения качества проверки гипотез. Чтобы уменьшить вероятность совершения ошибки типа I, достаточно просто и эффективно сделать значение альфа (p) более строгим. Чтобы уменьшить вероятность совершения ошибки типа II, которая тесно связана с мощностью анализа, либо увеличение размера выборки теста, либо ослабление альфа-уровня могут увеличить мощность анализа. [10] Тестовая статистика является надежной, если частота ошибок типа I находится под контролем.

Также можно использовать различные пороговые значения (отсечки), чтобы сделать тест более специфичным или более чувствительным, что, в свою очередь, повышает качество теста. Например, представьте себе медицинский тест, в котором экспериментатор может измерить концентрацию определенного белка в образце крови. Экспериментатор мог настроить порог (черная вертикальная линия на рисунке), и у людей диагностировали заболевание, если какое-либо число было обнаружено выше этого определенного порога. Согласно изображению, изменение порога приведет к изменению ложноположительных и ложноотрицательных результатов, соответствующих движению по кривой. [11]

Пример

Поскольку в реальном эксперименте невозможно избежать всех ошибок типа I и типа II, важно учитывать степень риска, на который человек готов пойти, чтобы ложно отвергнуть H 0 или принять H 0 . Решением этого вопроса было бы сообщить значение p или уровень значимости α статистики. Например, если p-значение статистического результата теста оценивается как 0,0596, то существует вероятность 5,96%, что мы ошибочно отвергаем H 0 . Или, если мы говорим, что статистика выполняется на уровне α, например 0,05, то мы допускаем ложное отклонение H 0 на уровне 5%. Уровень значимости α, равный 0,05, является относительно распространенным, но не существует общего правила, подходящего для всех сценариев.

Измерение скорости автомобиля

Ограничение скорости на автостраде в США составляет 120 километров в час. Установлено устройство для измерения скорости проезжающих мимо транспортных средств. Предположим, что прибор проведет три измерения скорости проезжающего автомобиля, записывая в виде случайной выборки X 1 , X 2 , X 3 . ГИБДД будет или не будет штрафовать водителей в зависимости от средней скорости. То есть тестовая статистика.

Кроме того, мы предполагаем, что измерения X 1 , X 2 , X 3 моделируются как нормальное распределение N(μ,4). Затем T должно следовать за N (μ, 4/3), а параметр μ представляет собой истинную скорость проезжающего транспортного средства. В этом эксперименте нулевая гипотеза H 0 и альтернативная гипотеза H 1 должны быть

H 0 : µ=120 против H 1 : µ 1 >120.

Если мы выполняем статистический уровень при α = 0,05, то необходимо вычислить
критическое значение c для решения

Согласно правилу замены единиц для нормального распределения. Ссылаясь на Z-таблицу , мы можем получить

Здесь критическая область. То есть, если зафиксированная скорость транспортного средства превышает критическое значение 121,9, водитель будет оштрафован. Тем не менее, еще 5% водителей оштрафованы ложно, так как зарегистрированная средняя скорость превышает 121,9, а реальная скорость не превышает 120, что мы называем ошибкой I рода.

Ошибка II рода соответствует случаю, когда истинная скорость транспортного средства превышает 120 километров в час, но водитель не оштрафован. Например, если истинная скорость автомобиля µ=125, вероятность того, что водитель не будет оштрафован, можно рассчитать как

Это означает, что если истинная скорость транспортного средства равна 125, у водителя есть вероятность 0,36% избежать штрафа, когда статистика выполняется на уровне 125, поскольку зарегистрированная средняя скорость ниже 121,9. Если истинная скорость ближе к 121,9, чем к 125, то вероятность избежать штрафа тоже будет выше.

Следует также учитывать компромиссы между ошибкой первого рода и ошибкой второго рода. То есть в этом случае, если ГАИ не хочет ложно штрафовать невиновных водителей, уровень α можно установить на меньшее значение, например 0,01. Однако, если это так, больше водителей, чья реальная скорость превышает 120 километров в час, например 125, с большей вероятностью избегут штрафа.

этимология

В 1928 году Ежи Нейман (1894–1981) и Эгон Пирсон (1895–1980), оба выдающиеся статистики, обсуждали проблемы, связанные с «решением, можно ли считать конкретную выборку вероятной случайным образом взятой из определенной совокупности». «: [12] и, как заметила Флоренс Найтингейл Дэвид , «необходимо помнить, что прилагательное «случайный» [в термине «случайная выборка»] должно относиться к методу отбора пробы, а не к самой пробе». [13]

Они выявили «два источника ошибок», а именно:

(а) ошибка отклонения гипотезы, которую не следовало отвергать, и
(b) ошибка, заключающаяся в том, что не удалось отвергнуть гипотезу, которую следовало отвергнуть.

В 1930 году они подробно остановились на этих двух источниках ошибок, отметив, что:

… при проверке гипотез необходимо учитывать два соображения: мы должны иметь возможность уменьшить вероятность отклонения истинной гипотезы до желаемого низкого значения; тест должен быть разработан таким образом, чтобы он отклонял проверяемую гипотезу, когда она, вероятно, окажется ложной.

В 1933 году они заметили, что эти «проблемы редко представляются в такой форме, чтобы мы могли с уверенностью отличить истинную гипотезу от ложной». Они также отметили, что, решая, не отклонить или отвергнуть конкретную гипотезу среди «набора альтернативных гипотез», H 1 , H 2 …, легко сделать ошибку:

…[и] эти ошибки будут двух видов:

(I) мы отвергаем H 0 [т.е. гипотезу, которую нужно проверить], когда она верна, [14]
(II) мы не можем отвергнуть H 0 , когда какая-либо альтернативная гипотеза H A или H 1 верна. (Есть различные обозначения для альтернативы).

Во всех статьях, написанных совместно Нейманом и Пирсоном, выражение H 0 всегда означает «гипотезу, подлежащую проверке».

В той же статье они называют эти два источника ошибок ошибками типа I и ошибками типа II соответственно. [15]

Нулевая гипотеза

Стандартной практикой для статистиков является проведение тестов , чтобы определить, может ли быть подтверждена « спекулятивная гипотеза » относительно наблюдаемых явлений мира (или его обитателей). Результаты такого тестирования определяют, разумно ли конкретный набор результатов согласуется (или не согласуется) с предполагаемой гипотезой.

На том основании, что согласно статистической традиции всегда предполагается, что предполагаемая гипотеза ошибочна, а так называемая « нулевая гипотеза » утверждает, что наблюдаемые явления происходят просто случайно (и что, как следствие, предполагаемый агент не имеет эффект) – тест определит, верна эта гипотеза или нет. Вот почему проверяемую гипотезу часто называют нулевой гипотезой (скорее всего, введенной Фишером (1935, стр. 19)), потому что именно эта гипотеза должна быть либо аннулирована , либо не аннулирована проверкой. Когда нулевая гипотеза аннулируется, можно заключить, что данные подтверждают « альтернативную гипотезу ».«(что является исходным предположением).

Последовательное применение статистиками соглашения Неймана и Пирсона о представлении « гипотезы, подлежащей проверке » (или « гипотезы, подлежащей аннулированию ») выражением H0 , привело к обстоятельствам, при которых многие понимают термин « нулевая гипотеза » как означающий « нулевая гипотеза » — утверждение о том, что рассматриваемые результаты возникли случайно. Это не обязательно так — ключевое ограничение, согласно Фишеру (1966), состоит в том, что « нулевая гипотеза должна быть точной, свободной от неопределенности и двусмысленности, потому что она должна служить основой для «проблемы распределения». из которых критерий значимости является решением. « [16] Как следствие этого, в экспериментальной науке нулевая гипотеза обычно представляет собой утверждение о том, что конкретное лечение не имеет никакого эффекта ; в наблюдательной науке это то, что нет никакой разницы между значением конкретной измеренной переменной и значением экспериментального предсказания.

Статистическая значимость

Если вероятность получения столь же экстремального результата, как и полученный, при условии, что нулевая гипотеза верна, ниже заранее заданной пороговой вероятности (например, 5%), то результат считается статистически значимым . и нулевая гипотеза отвергается.

Британский статистик сэр Рональд Эйлмер Фишер (1890–1962) подчеркивал, что «нулевая гипотеза»:

… никогда не доказывается и не устанавливается, но, возможно, опровергается в ходе экспериментов. Можно сказать, что каждый эксперимент существует только для того, чтобы дать фактам возможность опровергнуть нулевую гипотезу.

-  Фишер, 1935, стр. 19.

Домены приложений

Медицина

В медицинской практике различия между применением скрининга и тестирования значительны.

Медицинский осмотр

Скрининг включает в себя относительно дешевые тесты, которые назначаются большим группам населения, ни один из которых не проявляет каких-либо клинических признаков заболевания (например, мазок Папаниколау ).

Тестирование включает гораздо более дорогие, часто инвазивные процедуры, которые назначаются только тем, у кого проявляются некоторые клинические признаки заболевания, и чаще всего применяются для подтверждения предполагаемого диагноза.

Например, в большинстве штатов США новорожденные должны проходить скрининг на фенилкетонурию и гипотиреоз , а также на другие врожденные заболевания .

Гипотеза: «У новорожденных фенилкетонурия и гипотиреоз»

Нулевая гипотеза (H 0 ): «У новорожденных нет фенилкетонурии и гипотиреоза».

Ошибка I рода (ложноположительный): Верно то, что у новорожденных нет фенилкетонурии и гипотиреоза, но по имеющимся данным мы считаем, что у них есть нарушения.

Ошибка II типа (ложноотрицательный): Истинный факт заключается в том, что у новорожденных есть фенилкетонурия и гипотиреоз, но мы считаем, что, согласно данным, у них нет нарушений.

Хотя они показывают высокий уровень ложноположительных результатов, скрининговые тесты считаются ценными, поскольку они значительно повышают вероятность обнаружения этих расстройств на гораздо более ранней стадии.

Простые анализы крови, используемые для скрининга возможных доноров крови на ВИЧ и гепатит , имеют значительный уровень ложноположительных результатов; однако врачи используют гораздо более дорогие и гораздо более точные тесты, чтобы определить, действительно ли человек заражен одним из этих вирусов.

Возможно, наиболее широко обсуждаемые ложноположительные результаты в медицинском скрининге связаны с процедурой маммографии для скрининга рака молочной железы.. Уровень ложноположительных маммограмм в США составляет до 15%, что является самым высоким показателем в мире. Одним из последствий высокого уровня ложноположительных результатов в США является то, что за любой 10-летний период половина американских женщин, прошедших скрининг, получают ложноположительные маммограммы. Ложноположительные маммограммы обходятся дорого: в США ежегодно тратится более 100 миллионов долларов на последующее тестирование и лечение. Они также вызывают у женщин ненужное беспокойство. В результате высокого уровня ложноположительных результатов в США до 90–95% женщин, получивших положительный результат маммографии, не имеют этого заболевания. Самый низкий показатель в мире в Нидерландах, 1%. Самые низкие показатели, как правило, в Северной Европе, где маммографические снимки считываются дважды и устанавливается высокий порог для дополнительного тестирования (высокий порог снижает мощность теста).

Идеальный скрининговый тест населения должен быть дешевым, простым в применении и по возможности не давать ложноотрицательных результатов. Такие тесты обычно дают больше ложноположительных результатов, которые впоследствии можно устранить с помощью более сложного (и дорогого) тестирования.

Медицинское тестирование

Ложноотрицательные и ложноположительные результаты являются серьезными проблемами в медицинском тестировании .

Гипотеза: «Пациенты имеют специфическое заболевание».

Нулевая гипотеза (H 0 ): «У пациентов нет специфического заболевания».

Ошибка I типа (ложноположительный результат): «Истинный факт заключается в том, что у пациентов нет определенного заболевания, но врачи судят, что пациент был болен на основании отчетов об испытаниях».

Ложные срабатывания также могут привести к серьезным и нелогичным проблемам, когда искомое состояние встречается редко, как при скрининге. Если тест имеет ложноположительный результат один на десять тысяч, но только один из миллиона образцов (или людей) является истинно положительным, большинство положительных результатов, обнаруженных этим тестом, будут ложными. Вероятность того, что наблюдаемый положительный результат является ложноположительным, можно рассчитать с помощью теоремы Байеса .

Ошибка типа II (ложноотрицательный): «На самом деле болезнь действительно присутствует, но отчеты об испытаниях дают ложно обнадеживающее сообщение пациентам и врачам, что болезнь отсутствует».

Ложноотрицательные результаты приводят к серьезным и нелогичным проблемам, особенно когда искомое состояние является распространенным. Если тест с частотой ложноотрицательных результатов всего 10 % используется для проверки популяции с истинной частотой встречаемости 70 %, многие отрицательные результаты, обнаруженные тестом, будут ложными.

Иногда это приводит к неадекватному или неадекватному лечению как больного, так и его заболевания. Типичным примером является использование сердечных нагрузочных тестов для выявления коронарного атеросклероза, хотя известно, что сердечные нагрузочные тесты обнаруживают только ограничения кровотока в коронарных артериях из-за прогрессирующего стеноза .

Биометрия

Биометрическое сопоставление, такое как распознавание отпечатков пальцев , лиц или радужной оболочки глаза , подвержено ошибкам типа I и типа II.

Гипотеза: «Ввод не идентифицирует кого-то в списке искомых людей»

Нулевая гипотеза: «Ввод действительно идентифицирует кого-то в искомом списке людей»

Ошибка I типа (коэффициент ложных отказов): «Правда в том, что человек есть кто-то в искомом списке, но система делает вывод, что человек не соответствует данным».

Ошибка II типа (коэффициент ложного совпадения): «Истинный факт заключается в том, что человек не является кем-то из искомого списка, но система делает вывод, что этот человек является тем, кого мы ищем в соответствии с данными».

Вероятность ошибок типа I называется «коэффициентом ложных отклонений» (FRR) или коэффициентом ложных несоответствий (FNMR), а вероятность ошибок типа II называется «коэффициентом ложного принятия» (FAR) или коэффициентом ложных совпадений ( ФМР).

Если система предназначена для редкого совпадения подозреваемых, то вероятность ошибок типа II можно назвать « коэффициентом ложных тревог ». С другой стороны, если система используется для валидации (а принятие является нормой), то FAR является мерой безопасности системы, а FRR измеряет уровень неудобств для пользователя.

Проверка безопасности

Основные статьи: обнаружение взрывчатых веществ и металлоискатель

Ложные срабатывания регулярно обнаруживаются каждый день при досмотре в аэропортах , которые, в конечном счете, являются системами визуального контроля . Установленная охранная сигнализация предназначена для предотвращения проноса оружия на самолет; тем не менее, они часто настроены на такую ​​высокую чувствительность, что много раз в день сигнализируют о мелких предметах, таких как ключи, пряжки ремней, мелочь, мобильные телефоны и кнопки в обуви.

Здесь гипотеза такова: «Предмет — оружие».

Нулевая гипотеза: «Предмет не является оружием».

Ошибка типа I (ложноположительный результат): «На самом деле предмет не является оружием, но система все равно подает сигнал тревоги».

Ошибка типа II (ложноотрицательный) «Правда в том, что предмет является оружием, но система в это время молчит».

Таким образом, соотношение ложных срабатываний (обнаружение невиновного путешественника как террориста) и истинных срабатываний (обнаружение потенциального террориста) очень велико; и поскольку почти каждый сигнал тревоги является ложноположительным, положительная прогностическая ценность этих скрининговых тестов очень низка.

Относительная стоимость ложных результатов определяет вероятность того, что создатели тестов допустят эти события. Поскольку цена ложноотрицательного результата в этом сценарии чрезвычайно высока (необнаружение бомбы, проносимой в самолет, может привести к сотням смертей), в то время как стоимость ложноположительного результата относительно низка (достаточно простая дальнейшая проверка), наиболее подходящим тест с низкой статистической специфичностью, но высокой статистической чувствительностью (который допускает высокий уровень ложноположительных результатов в обмен на минимальные ложноотрицательные результаты).

Компьютеры

Понятия ложных срабатываний и ложных отрицаний широко распространены в сфере компьютеров и компьютерных приложений, включая компьютерную безопасность , фильтрацию спама , вредоносное ПО , оптическое распознавание символов и многие другие.

Например, в случае фильтрации спама гипотеза состоит в том, что сообщение является спамом.

Таким образом, нулевая гипотеза: «Сообщение не является спамом».

Ошибка типа I (ложноположительный результат): «Методы фильтрации или блокировки спама ошибочно классифицируют законное сообщение электронной почты как спам и, как следствие, мешают его доставке».

Хотя большинство приемов борьбы со спамом могут блокировать или фильтровать большой процент нежелательных сообщений электронной почты, делать это без значительных ложноположительных результатов — гораздо более сложная задача.

Ошибка типа II (ложноотрицательный результат): «Спам-письмо не определяется как спам, но классифицируется как не спам». Низкое количество ложных срабатываний является показателем эффективности фильтрации спама.

Смотрите также

  • Бинарная классификация
  • Теория обнаружения
  • Эгон Пирсон
  • Этика в математике
  • Ложноположительный парадокс
  • Частота ошибок по семейным обстоятельствам
  • Показатели эффективности информационного поиска
  • Лемма Неймана – Пирсона
  • Нулевая гипотеза
  • Вероятность гипотезы для байесовского вывода
  • Точность и отзыв
  • Ошибка прокурора
  • Феномен прозоны
  • Рабочая характеристика приемника
  • Чувствительность и специфичность
  • Перекрестные ссылки статистических терминов статистиков и инженеров
  • Проверка гипотез, предложенных данными
  • Ошибка III типа

Ссылки

  1. ^ «Ошибка типа I и ошибка типа II» . explorable.com . Проверено 14 декабря 2019 г. .
  2. ^ Чоу, Ю.В.; Пьетранико, Р .; Мукерджи, А. (27 октября 1975 г.). «Исследования энергии связи кислорода с молекулой гемоглобина». Коммуникации по биохимическим и биофизическим исследованиям . 66 (4): 1424–1431. doi : 10.1016/0006-291x(75)90518-5 . ISSN 0006-291X . ПМИД 6 .  
  3. ^ Современное введение в вероятность и статистику: понимание почему и как . Деккинг, Мишель, 1946-. Лондон: Спрингер. 2005. ISBN 978-1-85233-896-1. OCLC  262680588 .{{cite book}}: CS1 maint: другие ( ссылка )
  4. ^ Современное введение в вероятность и статистику: понимание почему и как . Деккинг, Мишель, 1946-. Лондон: Спрингер. 2005. ISBN 978-1-85233-896-1. OCLC  262680588 .{{cite book}}: CS1 maint: другие ( ссылка )
  5. ^ Шескин, Дэвид (2004). Справочник по параметрическим и непараметрическим статистическим процедурам . КПР Пресс. п. 54 . ISBN 1584884401.
  6. ^ Смит, Р.Дж.; Брайант, Р.Г. (27 октября 1975 г.). «Замещения металлов в карбоангидразе: исследование ионно-галоидного зонда». Коммуникации по биохимическим и биофизическим исследованиям . 66 (4): 1281–1286. doi : 10.1016/0006-291x(75)90498-2 . ISSN 0006-291X . ПМИД 3 .  
  7. ^ Линденмайер, Дэвид. (2005). Практическая природоохранная биология . Бургман, Марк А. Коллингвуд, Виктория: CSIRO Pub. ISBN 0-643-09310-9. OCLC  65216357 .
  8. ^ Чоу, Ю.В.; Пьетранико, Р .; Мукерджи, А. (27 октября 1975 г.). «Исследования энергии связи кислорода с молекулой гемоглобина». Коммуникации по биохимическим и биофизическим исследованиям . 66 (4): 1424–1431. doi : 10.1016/0006-291x(75)90518-5 . ISSN 0006-291X . ПМИД 6 .  
  9. ^ Смит, Р.Дж.; Брайант, Р.Г. (27 октября 1975 г.). «Замещения металлов в карбоангидразе: исследование ионно-галоидного зонда». Коммуникации по биохимическим и биофизическим исследованиям . 66 (4): 1281–1286. doi : 10.1016/0006-291x(75)90498-2 . ISSN 0006-291X . ПМИД 3 .  
  10. ^ Смит, Р.Дж.; Брайант, Р.Г. (27 октября 1975 г.). «Замещения металлов в карбоангидразе: исследование ионно-галоидного зонда». Коммуникации по биохимическим и биофизическим исследованиям . 66 (4): 1281–1286. doi : 10.1016/0006-291x(75)90498-2 . ISSN 0006-291X . ПМИД 3 .  
  11. ^ Морой, К .; Сато, Т. (15 августа 1975 г.). «Сравнение метаболизма прокаина и изокарбоксазида in vitro с помощью микросомальной амидазы-эстеразы печени». Биохимическая фармакология . 24 (16): 1517–1521. doi : 10.1016/0006-2952(75)90029-5 . ISSN 1873-2968 . ПМИД 8 .  
  12. ^ НЕЙМАН, Дж.; ПИРСОН, Э.С. (1928). «Об использовании и интерпретации некоторых критериев тестирования для целей статистического вывода, часть I». Биометрика . 20А (1–2): 175–240. doi : 10.1093/биомет/20а.1-2.175 . ISSN 0006-3444 . 
  13. ↑ CIKF (июль 1951 г.). «Теория вероятностей для статистических методов. Ф. Н. Дэвид. [Стр. ix + 230. Издательство Кембриджского университета. 1949. Цена 155.]». Журнал актуарного общества Staple Inn . 10 (3): 243–244. doi : 10.1017/s0020269x00004564 . ISSN 0020-269X . 
  14. ^ Обратите внимание, что нижний индекс в выражении H 0 является нулем (указывающим на ноль ) , а не «О» (указывающим на оригинал ).
  15. ^ Нейман, Дж.; Пирсон, ES (30 октября 1933 г.). «Проверка статистических гипотез по отношению к априорным вероятностям». Математические труды Кембриджского философского общества . 29 (4): 492–510. Бибкод : 1933PCPS…29..492N . doi : 10.1017/s030500410001152x . ISSN 0305-0041 . 
  16. ^ Фишер, Р.А. (1966). Дизайн экспериментов. 8-е издание. Хафнер: Эдинбург.

Библиография

  • Бетц, М.А. и Габриэль, К.Р. , «Ошибки типа IV и анализ простых эффектов», Журнал статистики образования , Том 3, № 2 (лето 1978 г.), стр. 121–144.
  • Дэвид, Ф. Н., «Степенная функция для проверки случайности в последовательности альтернатив», Biometrika , Vol.34, Nos.3/4, (декабрь 1947 г.), стр. 335–339.
  • Фишер, Р.А., План экспериментов , Оливер и Бойд (Эдинбург), 1935.
  • Гэмбрилл, В., «Ложноположительные результаты тестов на заболевания новорожденных беспокоят родителей», День здоровья (5 июня 2006 г.). [1]
  • Кайзер, HF, «Направленные статистические решения», Psychological Review , Vol.67, No.3, (май 1960 г.), стр. 160–167.
  • Кимбалл, А.В., «Ошибки третьего рода в статистическом консультировании», Журнал Американской статистической ассоциации , том 52, № 278 (июнь 1957 г.), стр. 133–142.
  • Любин, А., «Интерпретация значимого взаимодействия», Образовательные и психологические измерения , Том 21, № 4, (зима 1961 г.), стр. 807–817.
  • Мараскуило, Л.А. и Левин, Дж.Р., «Подходящие апостериорные сравнения для взаимодействия и вложенных гипотез в анализе дисперсионных планов: устранение ошибок типа IV», Американский журнал исследований в области образования , том 7., № 3, (май 1970 г. ), стр. 397–421.
  • Митрофф, И. И. и Фезерингем, Т. Р., «О системном решении проблем и ошибках третьего рода», Behavioral Science , том 19, № 6 (ноябрь 1974 г.), стр. 383–393.
  • Мостеллер, Ф., « К -выборочный тест проскальзывания для экстремальной совокупности», Анналы математической статистики , том 19, № 1 (март 1948 г.), стр. 58–65.
  • Моултон, RT, «Сетевая безопасность», Datamation , том 29, № 7 (июль 1983 г.), стр. 121–127.
  • Райффа, Х., Анализ решений: вводные лекции о выборе в условиях неопределенности , Аддисон-Уэсли, (чтение), 1968.

Внешние ссылки

  • Предвзятость и смешение  – презентация Найджела Панета, Высшая школа общественного здравоохранения Питтсбургского университета

0 0 голоса
Рейтинг статьи
Подписаться
Уведомить о
guest

0 комментариев
Старые
Новые Популярные
Межтекстовые Отзывы
Посмотреть все комментарии

А вот еще интересные материалы:

  • Яшка сломя голову остановился исправьте ошибки
  • Ятрогенная патология врачебные ошибки
  • Ясность цели позволяет целеустремленно добиваться намеченного исправьте ошибки
  • Ясность цели позволяет целеустремленно добиваться намеченного где ошибка
  • Экологи занимаются проблемами окружающей среды где ошибка